Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

Pfeffer comments on Fed report that reveals 20-year decline in net worth among American families

More News

Highlights

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

ASA President Bonilla-Silva takes exception with Chief Justice Roberts' 'gobbledygook' jab

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Trivellore Raghunathan photo

What Do We Do With Missing Data? Some Options for Analysis of Incomplete Data

Publication Abstract

Raghunathan, Trivellore. 2004. "What Do We Do With Missing Data? Some Options for Analysis of Incomplete Data." Annual Review of Public Health, 25:99-117.

Missing data are a pervasive problem in many public health investigations. The standard approach is to restrict the analysis to subjects with complete data on the variables involved in the analysis. Estimates from such analysis can be biased, especially if the subjects who are included in the analysis are systematically different from those who were excluded in terms of one or more key variables. Severity of bias in the estimates is illustrated through a simulation study in a logistic regression setting. This article reviews three approaches for analyzing incomplete data. The first approach involves weighting subjects who are included in the analysis to compensate for those who were excluded because of missing values. The second approach is based on multiple imputation where missing values are replaced by two or more plausible values. The final approach is based on constructing the likelihood based on the incomplete observed data. The same logistic regression example is used to illustrate the basic concepts and methodology. Some software packages for analyzing incomplete data are described.

Browse | Search : All Pubs | Next