Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Davis-Kean et al. link children's self-perceptions to their math and reading achievement

Yang and Mahajan examine how hurricanes impact migration to the US

Patrick and colleagues analyze high-intensity drinking among adolescents

More News

Highlights

Pamela Smock elected to PAA Committee on Publications

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

More Highlights

Next Brown Bag

Mon, Sept 11, 2017, noon:
Welcoming of Postdoctoral Fellows: Angela Bruns, Karra Greenberg, Sarah Seelye and Emily Treleaven

Low Density Lipoprotein Particle Size and Risk of Early-Onset Myocardial Infarction in Women

Publication Abstract

Kamigaki, A.S., D.S. Siscovick, S.M. Schwartz, B.M. Psaty, K.L. Edwards, Trivellore Raghunathan, and M.A. Austin . 2001. "Low Density Lipoprotein Particle Size and Risk of Early-Onset Myocardial Infarction in Women." American Journal of Epidemiology, 153:939-945.

Previous studies of middle-aged men have shown a univariate association between low density lipoprotein (LDL) particle diameter (size) and coronary heart disease, but this association has yet to be examined in younger women. Using a subsample from a population-based case-control study of women living in western Washington State, the authors examined the association between LDL particle size and risk of early-onset myocardial infarction (MI) in 1992-1995. Gradient gel electrophoresis was used to characterize LDL subclasses in nonfasting blood samples from 72 MI cases and 159 controls aged 20-44 years. Mean LDL particle size in cases was significantly smaller compared with controls (26.4 vs. 26.9 nm, p < 0.001), with an odds ratio of 2.3 (p < 0.0001) for a 1-nm smaller LDL particle size. These results were independent of age, menopausal status, smoking, diabetes, hypertension, and LDL cholesterol (odds ratios = 1.9-2.3 for a l-nm smaller LDL particle size, all p < 0.02) but were not independent of body mass index, high density lipoprotein cholesterol, or triglyceride (odds ratios = 1.4, 1.4, and 1.1, respectively; all p > 0.05). Therefore, in age-adjusted analyses, smaller LDL particle size was associated with MI in young women, but the risk was attenuated after adjustments for metabolic factors related to both LDL particle size and MI.

Browse | Search : All Pubs | Next