Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Work by Geronimus cited in account of Serena Williams' maternal health complications

Alexander and Massey compare outcomes for children whose parents did and did not take part in Great Migration

Geronimus on pushing past early dismissal of her weathering hypothesis

More News

Highlights

AA named 2018 Best Place to Live in America (out of 100 cities)

Remembering Jim Morgan, founding member of ISR and creator of the PSID

1/17/18: ISR screening and discussion of documentary "Class Divide" at Michigan Theater

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Assessing the Total Effect of Time-Varying Predictors in Prevention Research

Publication Abstract

Bray, B.C., Daniel Almirall, R.S. Zimmerman, D. Lynam, and Susan A. Murphy. 2006. "Assessing the Total Effect of Time-Varying Predictors in Prevention Research." Prevention Science, 7(1): 1-17.

Observational data are often used to address prevention questions such as, "If alcohol initiation could be delayed, would that in turn cause a delay in marijuana initiation?" This question is concerned with the total causal effect of the timing of alcohol initiation on the timing of marijuana initiation. Unfortunately, when observational data are used to address a question such as the above, alternative explanations for the observed relationship between the predictor, here timing of alcohol initiation, and the response abound. These alternative explanations are due to the presence of confounders. Adjusting for confounders when using observational data is a particularly challenging problem when the predictor and confounders are time-varying. When time-varying confounders are present, the standard method of adjusting for confounders may fail to reduce bias and indeed can increase bias. In this paper, an intuitive and accessible graphical approach is used to illustrate how the standard method of controlling for confounders may result in biased total causal effect estimates. The graphical approach also provides an intuitive justification for an alternate method proposed by James Robins [Robins, J. M. (1998). 1997 Proceedings of the American Statistical Association, section on Bayesian statistical science (pp. 1 - 10). Retrieved from http://www.biostat.harvard.edu/robins/research.html; Robins, J. M., Hernan, M., & Brumback, B. (2000). Epidemiology, 11( 5), 550 - 560]. The above two methods are illustrated by addressing the motivating question. Implications for prevention researchers who wish to estimate total causal effects using longitudinal observational data are discussed.

DOI:10.1007/s11121-005-0023-0 (Full Text)

PMCID: PMC1479302. (Pub Med Central)

Browse | Search : All Pubs | Next