Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Miller et al. find benefits of Medicaid for pregnant mothers in 1980s carry over two generations

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

More News

Highlights

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Predicting event times in clinical trials when treatment arm is masked

Publication Abstract

Donovan, J.M., Michael R. Elliott, and D.F. Heitjan. 2006. "Predicting event times in clinical trials when treatment arm is masked." Journal of Biopharmaceutical Statistics, 16(3): 343-356.

Because power is primarily determined by the number of events in event-based clinical trials, the timing for interim or final analysis of data is often determined based on the accrual of events during the course of the study. Thus, it is of interest to predict early and accurately the time of a landmark interim or terminating event. Existing Bayesian methods may be used to predict the date of the landmark event, based on current enrollment, event, and loss to follow-up, if treatment arms are known. This work extends these methods to the case where the treatment arms are masked by using a parametric mixture model with a known mixture proportion. Posterior simulation using the mixture model is compared with methods assuming a single population. Comparison of the mixture model with the single-population approach shows that with few events, these approaches produce substantially different results and that these results converge as the prediction time is closer to the landmark event. Simulations show that the mixture model with diffuse priors can have better coverage probabilities for the prediction interval than the nonmixture models if a treatment effect is present.

DOI:10.1080/10543400600609445 (Full Text)

Browse | Search : All Pubs | Next