Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Miller et al. find benefits of Medicaid for pregnant mothers in 1980s carry over two generations

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

More News

Highlights

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Simulating error propagation in land-cover change analysis: The implications of temporal dependence

Archived Abstract of Former PSC Researcher

Burnicki, A.C., Daniel G. Brown, and P. Goovaerts. 2007. "Simulating error propagation in land-cover change analysis: The implications of temporal dependence." Computers, Environment and Urban Systems, 31:282-302.

We examined factors that affect the propagation of error in analyses of land-cover change classified from multi-temporal satellite imagery by simulating multiple versions of land-cover maps at two times, time-1 and time-2. The maps, each with two categories of land-cover, were produced to investigate three specific attributes that affect change-detection accuracy: (1) the pattern of change that produced a time-2 map from a time-1 map, (2) the spatial patterns of the errors that affected both the time-1 and time-2 maps, and (3) the level of temporal dependence (or correlation) between the patterns of error at each time. The simulated maps were analyzed in a change analysis to assess the relative performance of the error-perturbed maps in identifying and quantifying the known land-cover changes. Accuracy measures, such as overall percent correctly classified and user's accuracy, were calculated to describe the effects of land-cover errors on the accuracy of the change maps under each experimental setting. The results illustrate that temporal dependence of errors in land-cover maps influences both our ability to detect a variety of land-cover changes and the level of error in change maps. The study also illustrates how spatial simulation can be used to investigate patterns of error propagation where assumptions of spatial and/or temporal independence are violated.

DOI:10.1016/j.compenvurbsys.2006.07.005 (Full Text)

Browse | Search : All Pubs | Next