Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Alexander and Massey compare outcomes for children whose parents did and did not take part in Great Migration

Geronimus on pushing past early dismissal of her weathering hypothesis

Thompson: Censoring reading materials in prisons could lead to more, not less rebellion

More News

Highlights

Remembering Jim Morgan, founding member of ISR and creator of the PSID

1/17/18: ISR screening and discussion of documentary "Class Divide" at Michigan Theater

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Loglinear residual tests of Moran's I autocorrelation and their applications to Kentucky breast cancer data

Publication Abstract

Lin, Ge, and T.L. Zhang. 2007. "Loglinear residual tests of Moran's I autocorrelation and their applications to Kentucky breast cancer data." Geographical Analysis, 39:293-310.

This article bridges the permutation test of Moran's I to the residuals of a loglinear model under the asymptotic normality assumption. It provides the versions of Moran's I based on Pearson residuals (I-PR) and deviance residuals (I-DR) so that they can be used to test for spatial clustering while at the same time account for potential covariates and heterogeneous population sizes. Our simulations showed that both I-PR and I-DR are effective to account for heterogeneous population sizes. The tests based on I-PR and I-DR are applied to a set of log-rate models for early-stage and late-stage breast cancer with socioeconomic and access-to-care data in Kentucky. The results showed that socioeconomic and access-to-care variables can sufficiently explain spatial clustering of early-stage breast carcinomas, but these factors cannot explain that for the late stage. For this reason, we used local spatial association terms and located four late-stage breast cancer clusters that could not be explained. The results also confirmed our expectation that a high screening level would be associated with a high incidence rate of early-stage disease, which in turn would reduce late-stage incidence rates.

DOI:10.1111/j.1538-4632.2007.00705.x (Full Text)

Browse | Search : All Pubs | Next