Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Savolainen links antisocial behavior in childhood to disadvantage and poverty in adulthood

Norton et al. put dollar value on relief from chronic pain for Americans age 50+

Seefeldt says TANF restrictions may limit program's help for poor Americans

More News

Highlights

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

Neal Krause wins GSA's Robert Kleemeier Award

U-M awarded $58 million to develop ideas for preventing and treating health problems

More Highlights

Comparison of empirical methods for building agent-based models in land use science

Publication Abstract

Robinson, D.T., Daniel G. Brown, D.C. Parker, P. Schreinemachers, M.A. Janssen, M. Huigen, H. Wittmer, N. Gotts, P. Promburom, E. Irwin, T. Berger, F. Gatzweiler, and C. Barnaud. 2007. "Comparison of empirical methods for building agent-based models in land use science." Journal of Land Use Science, 2:31-55.

The use of agent-based models (ABMs) for investigating land-use science questions has been increasing dramatically over the last decade. Modelers have moved from ‘proofs of existence’ toy models to case-specific, multi-scaled, multi-actor, and data-intensive models of land-use and land-cover change. An international workshop, titled ‘Multi-Agent Modeling and Collaborative Planning—Method2Method Workshop’, was held in Bonn in 2005 in order to bring together researchers using different data collection approaches to informing agent-based models. Participants identified a typology of five approaches to empirically inform ABMs for land use science: sample surveys, participant observation, field and laboratory experiments, companion modeling, and GIS and remotely sensed data. This paper reviews these five approaches to informing ABMs, provides a corresponding case study describing the model usage of these approaches, the types of data each approach produces, the types of questions those data can answer, and an evaluation of the strengths and weaknesses of those data for use in an ABM.

DOI:10.1080/17474230701201349 (Full Text)

Browse | Search : All Pubs | Next