Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Survey that provided telling look into how Detroit blacks viewed 1967 riot largely ignored

Eisenberg says college athletes much less likely than other students to seek help with mental health conditions

Mitchell finds children who lose fathers suffer at cellular level

More News

Highlights

Neal Krause wins GSA's Robert Kleemeier Award

U-M awarded $58 million to develop ideas for preventing and treating health problems

Bailey, Eisenberg , and Fomby promoted at PSC

Former PSC trainee Eric Chyn wins PAA's Dorothy S. Thomas Award for best paper

More Highlights

A supplemental indicator of high-value or low-value spatial clustering

Publication Abstract

Zhang, T.L., and Ge Lin. 2006. "A supplemental indicator of high-value or low-value spatial clustering." Geographical Analysis, 38(2): 209-225.

Most test statistics for detecting spatial clustering cannot distinguish between low-value spatial clustering and high-value spatial clustering, and none is designed to explicitly detect high-value clustering, low-value clustering, or both. To fill this void in practice, we introduce an adjustment procedure that can supplement common two-sided spatial clustering tests so that a one-sided conclusion can be reached. The procedure is applied to Moran's I and Tango's C-G in both simulated and real-world spatial patterns. The results show that the adjustment procedure can account for the influence of low-value clusters on high-value clustering and vice versa. The procedure has little effect on the original global testing methods when there is no clustering. When there is a clustering tendency, the procedure can unambiguously distinguish the existence of high-value clusters or low-value clusters or both.

DOI:10.1111/j.0016-7363.2006.00683.x (Full Text)

Browse | Search : All Pubs | Next