Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Miller et al. find benefits of Medicaid for pregnant mothers in 1980s carry over two generations

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

More News


Bailey et al. find higher incomes among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Time to include time to death? The future of health care expenditure predictions

Publication Abstract

Stearns, S.C., and Edward Norton. 2004. "Time to include time to death? The future of health care expenditure predictions." Health Economics, 13(4): 315-327.

Government projections of future health care expenditures - a great concern given the aging baby-boom generation - are based on econometric regressions that control explicitly for age but do not control for end-of-life expenditures. Because expenditures increase dramatically on average at the end of life, predictions of future cost distributions based on regressions that omit time to death as an explanatory variable will be biased upward (or, more explicitly, the coefficients on age will be biased upward) if technology or other social factors continue to prolong life. Although health care expenditure predictions for a current sample will not be biased, predictions for future cohorts with greater longevity will be biased upwards, and the magnitude of the bias will increase as the expected longevity increases. We explore the empirical implications of incorporating time to death in longitudinal models of health expenditures for the purpose of predicting future expenditures. Predictions from a simple model that excludes time to death and uses current life tables are 9% higher than from an expanded model controlling for time to death. The bias increases to 15% when using projected life tables for 2020. The predicted differences between the models are sufficient to justify reassessment of the value of inclusion of time to death in models for predicting health care expenditures. Copyright (C) 2003 John Wiley Sons, Ltd.

Browse | Search : All Pubs | Next