Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Buchmueller says employee wages are hit harder than corporate profits by rising health insurance costs

Davis-Kean et al. link children's self-perceptions to their math and reading achievement

Yang and Mahajan examine how hurricanes impact migration to the US

More News

Highlights

Pamela Smock elected to PAA Committee on Publications

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

More Highlights

Next Brown Bag

Mon, Sept 11, 2017, noon:
Welcoming of Postdoctoral Fellows: Angela Bruns, Karra Greenberg, Sarah Seelye and Emily Treleaven

A false-discovery-rate-based loss framework for selection of interactions

Publication Abstract

Chen, W., D. Ghosh, Trivellore Raghunathan, and D.J. Sargent. 2008. "A false-discovery-rate-based loss framework for selection of interactions." Statistics in Medicine, 27(11): 2004-2021.

Interaction effects have been consistently found important in explaining the variation in outcomes in many scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection with interactions has discouraged activities in exploring important interaction effects. In this article, we investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of the decision rules are discussed and their performance in terms of power and FDR is compared through simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene expressions. Copyright (c) 2007 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3118 (Full Text)

Browse | Search : All Pubs | Next