Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

Pfeffer comments on Fed report that reveals 20-year decline in net worth among American families

More News

Highlights

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

ASA President Bonilla-Silva takes exception with Chief Justice Roberts' 'gobbledygook' jab

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming in Generalized Linear Regression Models

Publication Abstract

Elliott, Michael R. 2009. "Model Averaging Methods for Weight Trimming in Generalized Linear Regression Models." Journal of Official Statistics, 25(1): 1-20.

In sample surveys where units have unequal probabilities of inclusion, associations between the inclusion probability and the statistic of interest can induce bias in unweighted estimates. This is true even in regression models, where the estimates of the population slope may be biased if the underlying mean model is misspecified or the sampling is nonignorable. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights; weight trimming reduces large weights to a maximum value, reducing variability but introducing bias. Most standard approaches are ad hoc in that they do not use the data to optimize bias-variance trade-offs. This article uses Bayesian model averaging to create "data driven" weight trimming estimators. We extend previous results for linear regression models (Elliott 2008) to generalized linear regression models, developing robust models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC3530169. (Pub Med Central)

Browse | Search : All Pubs | Next