Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

Pfeffer comments on Fed report that reveals 20-year decline in net worth among American families

More News

Highlights

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

ASA President Bonilla-Silva takes exception with Chief Justice Roberts' 'gobbledygook' jab

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Scale dependence in quantification of land-cover and biomass change over Siberian boreal forest landscapes

Archived Abstract of Former PSC Researcher

Zhao, Tingting, Kathleen M. Bergen, Daniel G. Brown, and Herman H. Shugart. 2009. "Scale dependence in quantification of land-cover and biomass change over Siberian boreal forest landscapes." Landscape Ecology, 24(10): 1299-1313.

We investigated the influence of remote sensing spatial resolution on estimates of characteristic land-cover change (LCC) and LCC-related above-ground biomass change (Δbiomass) in three study sites representative of the East Siberian boreal forest. Data included LCC estimated using an existing Landsat-derived land-cover dataset for 1990 and 2000, and above-ground standing biomass stocks simulated by the FAREAST forest succession model and applied on a pixel basis. At the base 60 m resolution, several landscape pattern metrics were derived to describe the characteristic LCC types. LCC data were progressively degraded to 240, 480, and 960 m. LCC proportions and Δbiomass were derived at each of the coarser resolutions and scale dependences of LCC and Δbiomass were analyzed. Compared to the base 60 m resolution, the Logged LCC type was highly scale dependent and was consistently underestimated at coarser resolutions. The Burned type was under- or over-estimated depending strongly on its patch size. Estimated at the base 60 m resolution, modeled biomass increased in two sites (i.e., 3.0 and 6.4 Mg C ha−1 for the Tomsk and Krasnoyarsk sites, respectively) and declined slightly in one site (i.e., −0.5 Mg C ha−1 for the Irkutsk site) between the two dates. At the degraded resolutions, the estimated Δbiomass increased to 3.3 and 7.0 Mg C ha−1 for the Tomsk and Krasnoyarsk sites, while it declined to −0.8 Mg C ha−1 for the Irkutsk site. Results indicate that LCC and Δbiomass values may be progressively amplified in either direction as resolution is degraded, depending on the mean patch size (MPS) of disturbances, and that the error of LCC and Δbiomass estimates also increases at coarser resolutions

DOI:10.1007/s10980-009-9379-z (Full Text)

Country of focus: Russian Federation.

Browse | Search : All Pubs | Next