Structural Nested Mean Models for Assessing Time-Varying Effect Moderation

Publication Abstract

Almirall, Daniel, Thomas Ten Have, and Susan A. Murphy. 2010. "Structural Nested Mean Models for Assessing Time-Varying Effect Moderation." Biometrics, 66(1): 131-139.

This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.

10.1111/j.1541-0420.2009.01238.x

PMCID: PMC2875310. (Pub Med Central)

Country of focus: United States of America.

Browse | Search | Books | Next

PSC In The News

RSS Feed icon

Morenoff and Wileden discuss economic struggles in Detroit as grief runs deep during COVID-19 pandemic

Wolfers explains why solving health crisis is key to restarting economy

More News

Highlights

David Lam reappointed as ISR Director through 2021

Congratulations to 9 PSC trainees on the successful completion of their demography training in 2020

More Highlights


Connect with PSC follow PSC on Twitter Like PSC on Facebook