Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Work by Geronimus cited in account of Serena Williams' maternal health complications

Alexander and Massey compare outcomes for children whose parents did and did not take part in Great Migration

Geronimus on pushing past early dismissal of her weathering hypothesis

More News

Highlights

AA named 2018 Best Place to Live in America (out of 100 cities)

Remembering Jim Morgan, founding member of ISR and creator of the PSID

1/17/18: ISR screening and discussion of documentary "Class Divide" at Michigan Theater

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity

Archived Abstract of Former PSC Researcher

Burnicki, A.C., Daniel G. Brown, and P. Goovaerts. 2010. "Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity." International Journal of Geographical Information Science, 24(7): 1043-1060.

We examined the impact of temporal dependence between patterns of error in classified time-series imagery through a simulation modeling approach. This research extended the land-cover-change simulation model we previously developed to investigate: (1) the assumption of temporal independence between patterns of error in classified time-series imagery; and (2) the interaction of patterns of change and patterns of error in a post-classification change analysis. In this research, the thematic complexity of the classified land-cover maps was increased by increasing the number of simulated land-cover classes. Simulating maps with increased categorical resolution permitted the incorporation of: (1) higher-order, more complex spatial and temporal interactions between land-cover classes; and (2) patterns of error that better reproduce the complex error interactions that often occur in time-series classified imagery. The overall modeling framework was divided into two primary components: (1) generation of a map representing true change; and (2) generation of a suite of change maps that had been perturbed by specific patterns of error. All component maps in the model were produced using simulated annealing, which enabled us to create a series of map realizations with user-defined spatial and temporal patterns. Comparing the true map of change to the error-perturbed maps of change using accuracy assessment statistics showed that increasing the temporal dependence between classification errors did not improve the accuracy of resulting maps of change when the categorical scale of the land-cover classified maps was increased. The increased structural complexity within the time series of maps effectively inhibited the impact of temporal dependence. However, results demonstrated that there are interactions between patterns of error and patterns of change in a post-classification change analysis. These interactions played a major role in determining the accuracy associated with the maps of change.

DOI:10.1080/13658810903279008 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next