Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Buchmueller says employee wages are hit harder than corporate profits by rising health insurance costs

Davis-Kean et al. link children's self-perceptions to their math and reading achievement

Yang and Mahajan examine how hurricanes impact migration to the US

More News

Highlights

Pamela Smock elected to PAA Committee on Publications

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

More Highlights

Next Brown Bag

Mon, Sept 11, 2017, noon:
Welcoming of Postdoctoral Fellows: Angela Bruns, Karra Greenberg, Sarah Seelye and Emily Treleaven

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling

Publication Abstract

Chen, Q.X., Michael R. Elliott, and R.J. Little. 2010. "Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling." Survey Methodology, 36(1): 23-34.

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hajek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

Public Access Link

Browse | Search : All Pubs | Next