Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Work by Geronimus cited in account of Serena Williams' maternal health complications

Alexander and Massey compare outcomes for children whose parents did and did not take part in Great Migration

Geronimus on pushing past early dismissal of her weathering hypothesis

More News

Highlights

Robert Wood Johnson Foundation health leadership development programs accepting applications

AA named 2018 Best Place to Live in America (out of 100 cities)

Remembering Jim Morgan, founding member of ISR and creator of the PSID

1/17/18: ISR screening and discussion of documentary "Class Divide" at Michigan Theater

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling

Archived Abstract of Former PSC Researcher

Chen, Q.X., Michael R. Elliott, and R.J. Little. 2010. "Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling." Survey Methodology, 36(1): 23-34.

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hajek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

Public Access Link

Browse | Search : All Pubs | Next