Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Miller et al. find benefits of Medicaid for pregnant mothers in 1980s carry over two generations

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

More News

Highlights

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Bias Due to Left Truncation and Left Censoring in Longitudinal Studies of Developmental and Disease Processes

Publication Abstract

Cain, K., Sioban D. Harlow, R. J. A. Little, B. Nan, M. Yosef, J. Taffe, and Michael R. Elliott. 2011. "Bias Due to Left Truncation and Left Censoring in Longitudinal Studies of Developmental and Disease Processes." American Journal of Epidemiology, 173(9): 1078-1084.

In longitudinal studies of developmental and disease processes, participants are followed prospectively with intermediate milestones identified as they occur. Frequently, studies enroll participants over a range of ages including ages at which some participants' milestones have already passed. Ages at milestones that occur prior to study entry are left censored if individuals are enrolled in the study or left truncated if they are not. The authors examined the bias incurred by ignoring these issues when estimating the distribution of age at milestones or the time between 2 milestones. Methods that account for left truncation and censoring are considered. Data on the menopausal transition are used to illustrate the problem. Simulations show that bias can be substantial and that standard errors can be severely underestimated in naive analyses that ignore left truncation. Bias can be reduced when analyses account for left truncation, although the results are unstable when the fraction truncated is high. Simulations suggest that a better solution, when possible, is to modify the study design so that information on current status (i.e., whether or not a milestone has passed) is collected on all potential participants, analyzing those who are past the milestone at the time of recruitment as left censored rather than excluding such individuals from the analysis.

DOI:10.1093/aje/kwq481 (Full Text)

PMCID: PMC3121224. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next