Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

U-M's Wolfers on study showing "outright hostility" toward women in economics

Savolainen links antisocial behavior in childhood to disadvantage and poverty in adulthood

Norton et al. put dollar value on relief from chronic pain for Americans age 50+

More News

Highlights

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

Neal Krause wins GSA's Robert Kleemeier Award

More Highlights

Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis

Publication Abstract

Lizotte, Daniel, M. Bowling, and Susan A. Murphy. 2010. "Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis." In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) edited by Johannes Furnkranz and Thorsten Joachims. Madison, WI: International Machine Learning Society.

We introduce new, efficient algorithms for value iteration with multiple reward functions and continuous state. We also give an algorithm for finding the set of all non-dominated actions in the continuous state setting. This novel extension is appropriate for environments with continuous or finely discretized states where generalization is required, as is the case for data analysis of randomized controlled trials.

ISBN: 978-1-60558-907-7

Public Access Link

Browse | Search : All Pubs | Next