Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Geronimus on pushing past early dismissal of her weathering hypothesis

Thompson: Censoring reading materials in prisons could lead to more, not less rebellion

"Me Too" momentum in the field of economics?

More News


Remembering Jim Morgan, founding member of ISR and creator of the PSID

1/17/18: ISR screening and discussion of documentary "Class Divide" at Michigan Theater

Bailey et al. find higher income among children whose parents had access to federal family planning programs in the 1960s and 70s

U-M's campus climate survey results discussed in CHE story

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Model-Free Monte Carlo-like Policy Evaluation

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2010. "Model-Free Monte Carlo-like Policy Evaluation." In Volume 9: AISTATS 2010 Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers.

We propose an algorithm for estimating the finite-horizon expected return of a closed loop control policy from an a priori given (off-policy) sample of one-step transitions. It averages cumulated rewards along a set of "broken trajectories" made of one-step transitions selected from the sample on the basis of the control policy. Under some Lipschitz continuity assumptions on the system dynamics, reward function and control policy, we provide bounds on the bias and variance of the estimator that depend only on the Lipschitz constants, on the number of broken trajectories used in the estimator, and on the sparsity of the sample of one-step transitions.

Browse | Search : All Pubs | Next