Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Buchmueller says employee wages are hit harder than corporate profits by rising health insurance costs

Davis-Kean et al. link children's self-perceptions to their math and reading achievement

Yang and Mahajan examine how hurricanes impact migration to the US

More News

Highlights

Pamela Smock elected to PAA Committee on Publications

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

More Highlights

Next Brown Bag

Mon, Sept 11, 2017, noon:
Welcoming of Postdoctoral Fellows: Angela Bruns, Karra Greenberg, Sarah Seelye and Emily Treleaven

Yu Xie photo

Estimating Heterogeneous Treatment Effects with Observational Data

Publication Abstract

Download PDF versionXie, Yu, Jennie Brand, and Ben Jann. 2011. "Estimating Heterogeneous Treatment Effects with Observational Data." PSC Research Report No. 11-729. 2 2011.

Heterogeneous treatment effects are widely recognized but seldom studied empirically in quantitative sociological research. We suspect that lack of accessible statistical methods is one reason why heterogeneous treatment effects are not routinely assessed and reported. In this paper, we discuss a practical approach to studying heterogeneous treatment effects, under the same assumption commonly underlying regression analysis: ignorability. We specifically describe two methods. For the first method (SM-HTE), we begin by estimating propensity scores for the probability of treatment given a set of observed covariates for each unit and construct balanced propensity score strata; we then estimate propensity score stratum-specific average treatment effects and evaluate a trend across the strata-specific treatment effects. For the second method (MS-HTE), we match control units to treated units based on the propensity score and transform the data into treatment-control comparisons at the most elementary level at which such comparisons can be constructed; we then estimate treatment effects as a function of the propensity score by fitting a non-parametric model as a smoothing device. We illustrate the application of the two methods with a concrete empirical example.

Browse | Search : All Pubs | Next