Combining information from multiple complex surveys

Archived Abstract of Former PSC Researcher

Dong, Q., Michael R. Elliott, and Trivellore Raghunathan. 2014. "Combining information from multiple complex surveys." Survey Methodology, 40(2): 347-354.

This manuscript describes the use of multiple imputation to combine information from multiple surveys of the same underlying population. We use a newly developed method to generate synthetic populations nonparametrically using a finite population Bayesian bootstrap that automatically accounting for complex sample designs. We then analyze each synthetic population with standard complete-data software for simple random samples and obtain valid inference by combining the point and variance estimates using extensions of existing combining rules for synthetic data. We illustrate the approach by combining data from the 2006 National Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS).

Browse | Search | Next

PSC In The News

RSS Feed icon

Shaefer comments on the Cares Act impact in negating hardship during COVID-19 pandemic

Heller comments on lasting safety benefit of youth employment programs

More News

Highlights

Dean Yang's Combatting COVID-19 in Mozambique study releases Round 1 summary report

Help Establish Standard Data Collection Protocols for COVID-19 Research

More Highlights


Connect with PSC follow PSC on Twitter Like PSC on Facebook