Research Report

Yu Xie and Alexandra Killewald

Historical Trends in Social Mobility: Data, Methods, and Farming

Report 10-716
August 2010
Historical Trends in Social Mobility: Data, Methods, and Farming

Yu Xie
Alexandra Killewald

University of Michigan

Population Studies Center Research Report 10-716
August 2010

Please direct all correspondence to Yu Xie (e-mail: yuxie@umich.edu) at Population Studies Center, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann Arbor, MI 48106. We thank Joseph Ferrie for sharing data with us, Zheng Mu and Robert Willis for comments and suggestions on the paper, Miriam King for advice on historical census data, and Cindy Glovinsky for editorial assistance.
ABSTRACT

Using historical census data and survey data, Ferrie and Long (forthcoming) found a significant decline in social mobility in the United States from 1880 to 1973. We present three critiques of the Ferrie-Long study. First, the data quality of the Ferrie-Long study is far more limiting than the authors acknowledge, and we are able to detect some bias in their data in favor of their conclusion. Second, the Ferrie-Long study capitalizes on a particular method that is highly sensitive to an operationalization of the concept “social mobility.” Third, almost all the findings of the Ferrie-Long study are driven by farmers.
INTRODUCTION

Social scientists in general, and sociologists in particular, have long been interested in intergenerational occupational mobility. Indeed, the interest is so common in sociology that intergenerational occupational mobility is referred to there simply as “social mobility.” Most notable among innumerable contributions to the large literature on social mobility are landmark studies of Blau and Duncan (1967) and Featherman and Hauser (1978) for the U.S. and of Erikson and Goldthorpe (1992) for Europe. In these studies, social mobility is taken to measure a society’s openness. A widely accepted view rooted in neoclassical liberalism is that more social mobility, i.e., more openness, is good for a society, as it encourages placement of individuals in social positions according to competence rather than social origin (Hout 1988).

Adding to this large literature on social mobility is now a well-researched study by economists Ferrie and Long (forthcoming). Using historical census data and survey data, the Ferrie-Long study compares the U.S. and Britain around 1880 and around 1973. A key finding of the study is that the United States was much more socially mobile than Britain in the period around 1880, but the two countries had similar levels of social mobility around 1973. The authors supplemented the core comparison of the four (2x2) datasets with the analysis of four additional datasets for the U.S., demonstrating a sharp decline in social mobility in the U.S. over its history of rapid industrialization and economic expansion from the post-Civil War era to the post-World War II era. Thus, the Ferrie-Long study supports the popular conception of America as an exceptional land of opportunity for all, but only prior to 1900.

The findings of the Ferrie-Long study are bound to shock the community of scholars who have been studying social mobility. Beginning with Lipset and Bendix (1964) if not earlier, the sociological literature on comparative social mobility now dates back more than fifty years (Ganzeboom, Treiman, Ultee 1991). The dominant view in the literature is that relative social mobility, or social fluidity (to be defined below), is either constant, or trendless and patternless in all industrialized nations (Featherman, Jones, and Hauser 1975; Erikson and Goldthorpe 1992; Guest, Landale and McCann 1989; Grusky and Hauser 1984; Hauser et al. 1975). A main challenge to this dominant view, based on empirical studies, is that social mobility in industrialized nations has increased over time, albeit slowly (e.g., Breen and Jonsson 2007; Featherman and Hauser 1978; Grusky 1986; Hout 1988; Vallet 2001). To our knowledge, Ferrie and Long are the first scholars to argue for the significant decline of social mobility in a major modern society. Given this controversial conclusion, whether or not the evidence actually supports their argument is of great interest to the larger scholarly community.
Why are the key findings of the Ferrie-Long study so different from those in a long and well-established standard literature on comparative social mobility? While most scholars who study social mobility are sociologists with a widely-accepted but confined paradigm, Ferrie and Long are economists who use methods and data that have not been widely used in sociology. Thus, the Ferrie-Long study is valuable in providing both new data on historical social mobility in the U.S. and Britain and a new challenge to the dominant “trendless” view found in the sociology literature on comparative mobility. However, before we can accept the findings of the Ferrie-Long study, we need to fully understand the study and its limitations and explore alternative interpretations.

In this paper, we present our critique of the Ferrie-Long study. While the Ferrie-Long study yielded many results, its most surprising finding was that the pre-1900 U.S. was much more socially mobile than the post-1970 U.S. Our critique thus focuses on the long-term trend analysis in the study of the U.S. case. Our critique can be summarized by three main points. First, the data quality of the Ferrie-Long study is far more limiting than the authors acknowledge, and we are able to detect some bias in their data in favor of their conclusion. Second, the Ferrie-Long study capitalizes on a particular method that is highly sensitive to an operationalization of the concept “social mobility.” Third, almost all the findings of the Ferrie-Long study are driven by farmers, who have not only constituted a unique sector in the labor market but also experienced a tremendous decline in the U.S. labor force since 1880.

HISTORICAL CENSUS DATA

A major contribution of the Ferrie-Long study is its creative use of historical census data. For simplicity, we focus our discussion on the U.S. data, as these data give rise to the surprising finding we discussed earlier. The basic idea is to link individuals (white males) across different censuses by name, state of birth (and parents’ states of birth), and year of birth. The linkage procedure capitalizes on the fact that, while only (1 percent) samples of families are available from the 1850, 1860, and 1900 U.S. censuses (http://usa.ipums.org/), the complete enumerations of the 1880 U.S. census are available (http://www.nappdata.org/). Appendix 1 of the Ferrie and Long (forthcoming) paper provides detailed documentation for linkages between the 1850 census and the 1880 census for white males ages 25 and under in 1850. We assume that the experience documented for 1850-1880 linkages is also applicable to those for 1860-1880 and 1880-1900 linkages that were also performed by the authors.
The authors acknowledge certain limitations of the data resulting from this linking procedure, documenting a 22 percent success rate for “white males age 25 and under in 1850” (Ferrie and Long forthcoming, p.37).\(^1\) However, the question still lingers as to whether the matched data are of sufficient quality, especially given a high failure rate of 78 percent. If the occurrence of matching failures were truly random, as the authors assume, the low success rate would have not caused any bias to the results. In the other extreme scenario of strong sample selection, however, the sample of successfully matched cases would have provided little identifying information about the general population to which the authors wish to generalize (Manski 1995). Thus, it is extremely important that we evaluate the quality of the matched data from historical censuses.

Our evaluation of the data quality proceeds in two steps. First, we document a data quality issue that is ignored in the Ferrie-Long study and its potential consequence for biases. Second, we provide some concrete evidence that suggests a bias resulting from their linking procedure in favor of Ferrie and Long’s conclusion.

One data issue that is not discussed by Ferrie and Long in their paper is the requirement of coresidence with fathers on the earlier census. For example, in order to construct the intergenerational mobility table by matching data from the 1850 and 1880 U.S. censuses, it is necessary that boys ages 13-19 be reported to co-reside with their fathers on the 1850 census form, as we also need the father-son linkage on the 1850 census form to know father’s occupation (in 1850). Not all young white males lived with their fathers. Using data from the Integrated Public Use Microdata Series (IPUMS) (Ruggles et al. 2009), we examine the residential status of boys of the ages considered in the Ferrie and Long study. In our reanalysis of the 1850 data, we find the percentage of coresidence to be 72% for white males ages 0-25 and 68% for white males ages 13-19.\(^2\) As expected, the coresidence rate differs by age, farm status, and student status. We provide full descriptive statistics involving these variables in Table 1.

\(^1\) We are unclear as to why the documentation refers to white males ages 25 and under in 1850, as the authors actually used data for white males between ages 13 and 19 in their main mobility analysis reported in the paper. In our reanalysis of the data, we do not find the matching rate to differ much as we change the age range from 0-25 to 13-19.

\(^2\) Our reanalysis of the Ferrie-Long data focuses on linkages between the 1850 and 1880 censuses because this is the matched data that were provided to us by Joseph Ferrie. Appendix 1 of the Ferrie and Long paper also discusses the 1850-1880 linkages extensively.
Table 1: Estimated Statistics for Young White Males in 1850 U.S.

<table>
<thead>
<tr>
<th>Age</th>
<th>% On Farm</th>
<th>% In School</th>
<th>% Living with Father by Farm Status</th>
<th>% Living with Father by Student Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Farm</td>
<td>Non-Farm</td>
</tr>
<tr>
<td>0-25</td>
<td>54.8</td>
<td>72.7</td>
<td>80.4</td>
<td>63.5</td>
</tr>
<tr>
<td>13-19</td>
<td>58.1</td>
<td>68.6</td>
<td>78.1</td>
<td>55.3</td>
</tr>
<tr>
<td>13</td>
<td>60.7</td>
<td>80.7</td>
<td>87.0</td>
<td>71.0</td>
</tr>
<tr>
<td>14</td>
<td>58.3</td>
<td>77.5</td>
<td>84.2</td>
<td>68.1</td>
</tr>
<tr>
<td>15</td>
<td>60.4</td>
<td>75.3</td>
<td>82.4</td>
<td>64.4</td>
</tr>
<tr>
<td>16</td>
<td>58.9</td>
<td>70.5</td>
<td>79.4</td>
<td>57.6</td>
</tr>
<tr>
<td>17</td>
<td>58.2</td>
<td>64.6</td>
<td>75.0</td>
<td>50.0</td>
</tr>
<tr>
<td>18</td>
<td>55.1</td>
<td>57.5</td>
<td>70.1</td>
<td>42.0</td>
</tr>
<tr>
<td>19</td>
<td>54.8</td>
<td>51.7</td>
<td>65.6</td>
<td>34.8</td>
</tr>
</tbody>
</table>

Source: IPUMS of the 1850 US Census

The first two columns of Table 1 show that, in 1850, 58% of U.S. white boys ages 13-19 lived on farms, and 44% of them were enrolled as students. Negative age graduations are clear for both variables, although the age pattern for enrollment is much more pronounced. These negative age patterns suggest that young Americans then were already leaving school as well as home at these young ages. Note that the percentage of being enrolled in school was only at 67% for 13 years old boys. For these reasons, we are not surprised to observe, in the third column, that only 69% of young men in this age range still lived with their fathers, with the percentage declining gradually from 81% at age 13 to 52% at age 19. The last four columns break down the likelihood of coresidence by farm status and school status, with living on farms and being enrolled in schools both positively associated with coresidence with fathers. Again, there is a negative age pattern within each group.

Hence, we have shown that occupational mobility is structurally unknown for a large portion (about a third) of youth in the Ferrie and Long data due to their data construction method, even in the unlikely event of no linkage failures. Moreover, there are systematic patterns of this data omission by age, farm status, and student status. We do not know how this data limitation may have caused biases to the social mobility tables in the Ferrie-Long study. At the minimum, however, our reanalysis of the original 1850 data has revealed that that the actual matching rate

3 This low enrollment is not surprising, given that a large fraction of adult Americans (more precisely, 10% for whites age 20-50) were still illiterate in 1850 (calculated from http://usa.ipums.org/usa/sda/).
between the 1850 and 1880 censuses in the Ferrie-Long study is not 22 percent as reported, but much worse, 22 percent of 69 percent, i.e., 15 percent.

Conditional on coresidence, the probability of finding a match between the 1850 and 1880 data may be correlated with intergenerational mobility.\(^4\) Of course, ideally, we wish to know whether or not the matching likelihood is associated with intergenerational mobility in 1880, but this missing-at-random assumption cannot be empirically evaluated, as we do not observe a person’s occupation in 1880 unless the case is successfully matched. However, for a subset of sons who were already employed in occupations in 1850, it is possible to construct an intergenerational occupational mobility table based on 1850 data alone. Of course, the mobility experiences of this highly selective subsample should not be representative of their peers who did not report an occupation in 1850.\(^5\) In addition, many of these young persons would have changed to different occupations in 1880. Thus, a mobility table based on 1850 data for this special group is of limited substantive value, but it can be used to shed light on the issue of potential biases associated with matching. The main idea is to break the 1850 mobility table by matching status (success versus failure). If matching success or failure is truly random, mobility tables for the two subgroups broken down by matching status should not differ. That is, there is no reason, \textit{a priori}, that mobility patterns within this group should differ on the basis of their “future” matching status, unless matching is selective on mobility, which is then a testable hypothesis. We report our results of this test in Table 2.

To be conservative, we further restrict our analysis in Table 2 to young white males who not only co-resided with father and reported occupation, but also were not enrolled in school. We make this restriction to ensure that occupations reported for these sons in 1850 reflected their real jobs, not part-time jobs held by students. In Panel 1, we present the 1850 mobility table for the matched subsample; in Panel 2, we present the 1850 mobility table for the unmatched subsample. Again, matching is with respect to the 1880 census and thus could not possibly affect the 1850 mobility table in the way it does the 1880 mobility table. In Panel 3, we use the same method for evaluating social mobility in the two tables as in the Ferrie and Long study, although we realize the limitations of the method and will discuss them in the next section. We observe

\(^4\) We conducted an analysis of the likelihood of matching as a function of 1850 characteristics. We found that living in an urban (rather than a rural) place, having fewer siblings, father being literate (rather than illiterate), and being enrolled in school were all positively associated with matching success. Ferrie and Long also conducted a similar analysis and constructed weights to account for differential likelihoods of matching based on observed covariates.

\(^5\) In fact, among the matched members of our subsample, the \(d\) index (with \(I\) as reference) for the 1850-1880 intergenerational mobility is 16.0, somewhat larger than what is reported by Ferrie and Long for this whole cohort, at 11.9 (from the 1850-1880 data) or 12.1 (from the 1860-1880 data).
that the matched subsample (P, in Panel 1) is more mobile (i.e., closer to I, standing for independence) than the unmatched subsample (Q, in Panel 2). The results are:

$$d(P,I) = 29.89 \quad d(Q,I) = 33.56 \quad d(P,Q) = 7.71$$

<table>
<thead>
<tr>
<th>Table 2: Intergenerational Mobility for Fathers and Sons in U.S. 1850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father's Occupation</td>
</tr>
<tr>
<td>Son's Occupation</td>
</tr>
<tr>
<td>Panel 1. Matched Subsample (P)</td>
</tr>
<tr>
<td>White Collar</td>
</tr>
<tr>
<td>(45.5)</td>
</tr>
<tr>
<td>Farmer</td>
</tr>
<tr>
<td>(9.1)</td>
</tr>
<tr>
<td>Skilled/Semiskilled</td>
</tr>
<tr>
<td>(33.3)</td>
</tr>
<tr>
<td>Unskilled</td>
</tr>
<tr>
<td>(12.1)</td>
</tr>
<tr>
<td>Column Sum</td>
</tr>
<tr>
<td>Panel 2. Unmatched Subsample (Q)</td>
</tr>
<tr>
<td>White Collar</td>
</tr>
<tr>
<td>(55.9)</td>
</tr>
<tr>
<td>Farmer</td>
</tr>
<tr>
<td>(13.7)</td>
</tr>
<tr>
<td>Skilled/Semiskilled</td>
</tr>
<tr>
<td>(18.6)</td>
</tr>
<tr>
<td>Unskilled</td>
</tr>
<tr>
<td>(11.8)</td>
</tr>
<tr>
<td>Column Sum</td>
</tr>
<tr>
<td>Panel 3. Summary Measures of Mobility in Matched and Unmatched Subsamples</td>
</tr>
<tr>
<td>$d(P,I)$</td>
</tr>
<tr>
<td>29.89</td>
</tr>
</tbody>
</table>

Note: The sample is restricted to father-son pairs in which the son was age 13-19 in 1850, both father and son reported an occupation in 1850, and the son was not enrolled in school.

6 We also note that the test for differences in odds-ratios between the two tables is not statistically significant.
These d indexes are larger than those reported for the 1880 U.S. in the Ferrie-Long study. As we discussed before, the numbers are not comparable in an absolute sense. Because persons in mobility tables in Table 2 were somewhat selective and young (13-19 years old), the absolute magnitude of the d indexes is of no interest. The importance of the results in Table 2 lies in revealing a bias in the matched data that are analyzed by Ferrie and Long -- a bias indeed in favor of their key finding of high mobility in 1880, as the matched subsample shows moderately more mobility than in the unmatched subsample ($d(P,I) = 29.9$) versus $d(Q,I) = 33.6$). The difference in mobility between the two tables is noticeable ($d(P,Q) = 7.7$) but fairly small in magnitude. To conclude, if there had been no matching failures, or if matching success or failure had been truly random, we have good reasons to infer that the mobility table for 1880 would show less social mobility than reported in the Ferrie-Long study. However, we do not think that this bias alone would account for the unusual finding in the Ferrie-Long study.

MEASURING SOCIAL MOBILITY

Measurement of social mobility is not a straightforward matter. For the benefit of readers who may not be familiar with the sociological literature on social mobility, we present a brief methodological review in this section. Since an intergenerational mobility table is usually a square matrix, with the same occupational classification for father’s occupation and son’s occupation, diagonal cells represent immobility, or inheritance. At the first glance, it seems that we can simply measure social mobility by the proportion of individuals who fall in off-diagonal cells in a mobility table. Indeed, this simple descriptive measure, called “total mobility rate,” “absolute mobility rate,” or simply “mobility rate,” is commonly used and reported, as in the Ferrie-Long study. Of course, methodological problems with the mobility rate have been well known for a long time (Ganzeboom, Treiman, Ultee 1991). The main problem is that the mobility rate is affected by the marginal distributions of a mobility table.

Let f_{ij} be the observed frequency in the ith row ($i = 1,..I$) and jth column ($j = 1,..I$) in a mobility table with I rows and I columns. We follow Ferrie and Long in representing son’s occupation in rows and father’s occupation in columns, although the convention in the standard mobility literature is the reverse.
We further denote
\[f_{ir} = \sum_{j=1}^{I} f_{ij} \], \[f_{r+} = \sum_{i=1}^{I} f_{ij} \], and \[f_{++} = \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij} \]
respectively to be the row-specific total, the column-specific total, and the grand total. The marginal distributions of the row and the column variables (\(f_{ir} / f_{++} \) and \(f_{r+} / f_{++} \), when \(i = j \)) are almost always dissimilar, representing differences in occupational structure between subjects and their parents. For example, we often see lower proportions of workers in farming and in unskilled manual jobs among sons than among fathers. \(^7\) We define the mobility rate to be:
\[M = 1 - \left(\frac{\sum_{i=1}^{I} f_{ii}}{f_{++}} \right) \] \hspace{1cm} (1)

Of course, the amount of mobility measured this way as the proportion of cases that fall in off-diagonal cells is heavily dependent on occupational classification (Duncan 1966). For example, the cruder the classification, the higher the measured mobility by \(M \). For this reason, the mobility rates from different studies cited by Ferrie and Long (forthcoming, pp.4-5) are not directly comparable, as they were based on different occupational classification systems.

The earlier statement that \(M \) is affected by marginal distributions can be understood in two ways. First, when \(f_{ir} \neq f_{r+} \), \(i = j \), or occupational structure is dissimilar between sons and fathers, it is simply not possible to have perfect immobility (i.e., \(M = 0 \)). The amount of social mobility that is forced by an asymmetry in marginal distributions is sometimes called “structural mobility” (Sobel, Hout, and Duncan 1985). Second, even when father’s occupation and son’s occupation are independent of each other (to be discussed below), not only is \(M \) not 1, but its magnitude is dependent on marginal distributions. In comparative social mobility research, this is even more complicated because at least four marginal distributions (say for two tables) are involved.

To avoid the confounding of marginal distributions, scholars studying social mobility tables have relied on the use of odds-ratios as measures of “relative social mobility,” or simply “social fluidity.” This is true in both the large standard literature in sociology as well as in the Ferrie-Long study. To appreciate odds-ratio measures, let us first define the “independence

\(^7\) However, the differences in the marginal distributions should not be equated to secular changes in occupational structure between a given generation and its parents’ generation at any given historical time, due to such demographic factors as differential fertility and differential timing of fertility (Duncan 1966).
model” by the null hypothesis that there is no statistical association between father’s occupation and son’s occupation. The independence model is usually taken as the natural reference point for perfect mobility, deviation from which is then taken to indicate social closure, or social immobility. If the row and the column variables are independent of each other, it is easy to estimate the expected frequency as (Powers and Xie 2008, p.70):

$$\bar{f}_{ij} = \left(\frac{f_{i+}}{f_{++}} \right) \left(\frac{f_{+j}}{f_{++}} \right) f_{++} = f_{i+} f_{+j} / f_{++}. \quad (2)$$

That is, the expected frequency under the null is proportional both to the row-marginal total and the column-marginal total. With this insight, much of the effort in the early years of mobility analysis resorted to the proportional-adjustment method to account for differences in marginal distributions (Duncan 1966; Hauser 1978), as is also true in the Ferrie-Long study. An odds-ratio, between a pair of rows (i, i’), and a pair of columns (j, j’) is:

$$\omega_{i,i’;j,j’} = \frac{f_{i’j’}}{f_{ij}} \cdot \frac{f_{ij}}{f_{i’j’}}. \quad (3)$$

An attractive property of odds-ratios is that they are invariant to proportional changes (of the nature as in equation 2 under the independence model) in marginal distributions (Powers and Xie 2008, p.76). Invariance to multiplicative changes in marginal distributions is sometimes taken to mean the purging of the confounding influences on social mobility “from the interplay of supply and demand in the labor market or from long-term processes of societal development and transformation” (Hauser 1978, p.920). Another attractive property of odds-ratios is that, under the independence model, they are all 1’s for all possible pairs of the row and column variables in a mobility table. Thus, measuring relative social immobility is tantamount to measuring deviations of odds-ratios from 1. Of many possible odds-ratios, only (I-1)(I-1) of them are uniquely identified (Powers and Xie, p.74).

Another way to understand odds-ratios in a mobility table is to first calculate either row-proportions \((f_{ij} / f_{i+})\) or column-proportions \((f_{ij} / f_{+j})\) and compare a pair of row-proportions (by taking the ratio) across two rows or a pair of column-proportions (by taking the ratio) across two columns. This “ratio-of-ratio” measure is analogous to the difference-in-difference method now commonly used in quasi-experimental designs in economics (Angrist and Krueger 1999).

Yet, we will offer another interpretation of odds-ratios that should be familiar to all of our readers. A mobility table can be analyzed by a multinomial logit model, with son’s occupation as the dependent variable and father’s occupation as the only independent variable that is
categorical. In this setup, only \((I-1)(J-1)\) logit coefficients are identified. Odds-ratios are exponentiated forms of these logit coefficients. Because we in this case only have a single categorical independent variable, and logit coefficients are symmetric between the dependent variable and the independent variable, we can obtain the same logit coefficients, hence the same odds-ratios, by regressing father’s occupation (as the dependent variable) on son’s occupation. The first logit regression is an analysis of outflows, whereas the second logit regression is an analysis of inflows. The two approaches are statistically equivalent, as far as the relevant logit parameters are concerned.

Also focusing on odds-ratios, the Ferrie-Long study relies on Altham’s (1970) index as the main method of yielding findings. While it has not been widely used in previous research on social mobility, Altham’s index, denoted as \(d\), is a sensible summary measure comparing two tables, involving comparisons of all possible odds-ratios. Let \(f_{ijk}\) denote the observed frequency for the \(i\)th \((i=1,...,I)\) row, \(j\)th column \((j=1,...,J)\), and \(k\)th layer \((k=1,2)\).\(^8\)

We rewrite Altham’s index as:

\[
d(k=1,2) = \left(\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{2} \left(\log \frac{f_{ijk}f_{i'j1}}{f_{ij1}f_{i'j2}} - \log \frac{f_{i'j2}f_{ij2}}{f_{i'j1}f_{ij1}} \right) \right)^{2^{1/2}}.
\]

That is, Altham’s index is the square root of the sum of squared differences in corresponding logged odds-ratios between the two tables being compared across all possible permutations by row and column.\(^9\) For this reason, Ferrie and Long (forthcoming, p.12) recommend that we can interpret it as “the distance between the row-column associations in Tables P and Q.” In a typical setup for comparing two mobility tables \((Q\text{ and }P)\), Ferrie and Long first compared them separately to a table generated under the independence model (denoted as \(I\)) to see which table is closer to independence and thus shows more mobility and then directly compare them to assess the overall difference between the two tables. Along with these indices, the authors also report log-likelihood ratio chi-squared statistics for the comparisons.

\(^8\) In Altham’s notation, tables \(Q\) and \(P\) are referred to suppress the third subscript \(k\). We use the third subscript \(k\) to be consistent with the general literature on comparative social mobility. We allow for \(I \neq J\) in general, although in mobility analysis, \(I = J\).

\(^9\) Ferrie and Long’s (forthcoming, p.12) representation of the formula for Altham’s index is ambiguous as to whether the ratio in odds-ratios between the two tables is squared \textit{before} (or after) the logarithm sign.
It should be noted that the mobility rate, the odds-ratio, and Altham’s index do not take into account the potential ordering of occupational categories. While many sociologists believe in distinct, thus discontinuous, social positions (sometimes called “classes”) as represented by occupational categories, they are still interested in the social hierarchy, or vertical dimension, of occupations (Grusky and Sørensen 1998; Hauser 1978). One should not simply equate “social mobility” as something desirable or positive. For one thing, social mobility can be upward or downward. For another, social mobility \textit{per se} tells us very little about the behavioral mechanisms for allocating workers to positions and the consequences of such allocations for the overall welfare of a population. For these reasons, we may wish to use mobility tables merely as \textit{empirical descriptions} of concrete movements from father’s occupation to son’s occupation. Comparing it to linear regression analysis with a continuous measure of socioeconomic status, Hauser (1978, p.921) made the following justification of mobility table analysis:

In short, mobility tables are useful because they encourage a direct and detailed examination of movements in the stratification system. Within a given classification they tell us where in the social structure opportunities for movement or barriers to movement are greater or less, and in so doing provide clues about stratification processes which are no less important, if different in kind, from those uncovered by multivariate causal models.

In the standard literature on social mobility, the loglinear model has been the dominant method of choice. Similar to Altham’s index, the loglinear model enables the researcher to focus attention on odds-ratios. However, the loglinear approach has three additional advantages. First, it is a statistical model that smoothes sampling error by borrowing information across cells. Second, it affords the researcher flexibility in modeling sub-tables or blocking out certain cells and thus finding out local structures in social mobility non-parametrically (Goodman 1972; Hauser 1978). Third, the loglinear model can be extended to capitalize on, or to extract information about, ranking-order information in mobility tables, especially via Goodman’s (1979) influential work. One particular hypothesis that has received a lot of attention in the loglinear tradition is called the “quasi-independence” model, which specifies that the independence assumption (as stated in equation 2) holds true for all other cells after excluding diagonal cells representing direct inheritance. The Ferrie-Long study also considers this hypothesis.
In the loglinear analysis of a mobility table, the researcher is interested in understanding how the two-way association between the row variable (abbreviated as R, son’s occupation in our case), the column variable (abbreviated as C, father’s occupation in our case) depends on the third dimension – layer (abbreviated as L, time period in our case). Let F_{ijk} denote the expected frequency in the ith row, the jth column, and the kth layer. The saturated loglinear model can be written as:

$$\log(F_{ijk}) = \mu + \mu_i^R + \mu_j^C + \mu_k^L + \mu_{ij}^{RC} + \mu_{ik}^{RL} + \mu_{jk}^{CL} + \mu_{ijk}^{RCL}. \quad (5)$$

In a typical research setting, interest centers on the variation of the RC association across layers. That is to say, the researcher needs to specify and estimate μ_{RC} and μ_{RCL} in order to understand the layer-specific mobility. As Ferrie and Long (forthcoming p.43) recognize in their Appendix 2, “Xie (1992) is the standard reference for differences in mobility across tables calculated using conventional log-linear analysis.” Xie’s log-multiplicative model, also called the “unidiff” model, is to give a flexible specification for μ_{RC} but constrain μ_{RCL} so that equation (5) becomes:

$$\log(F_{ijk}) = \mu + \mu_i^R + \mu_j^C + \mu_k^L + \mu_{ik}^{RL} + \mu_{jk}^{CL} + \phi_k \psi_{ij}. \quad (6)$$

This model can be estimated via an iterative log-likelihood estimation method (Goodman 1979; Xie 1992).\(^{10}\)

Ferrie and Long’s (forthcoming) key finding did not come from their comparison of the mobility tables using the total mobility rate M (equation 1). In their Table 2 and the associated text, they clearly document that the mobility rate is lower in the 1880 data than in the 1973 data (51% versus 57%). It is only after adjusting for differences in marginal distributions using the proportional method that the authors are able to report a higher mobility rate in the 1880 data than in the 1973 data (58% versus 44%). Hence, whether we accept Ferrie and Long’s principal finding hinges on whether or not we accept the proportional adjustment method that has been well understood and commonly accepted in the literature.

The Ferrie-Long study reports its main findings using Altham’s (1970) index – a descriptive method of measuring differences in odds-ratios between two contingency tables. Although the method is little known and has not been used in the prior literature on comparative social mobility, we do not think that Ferrie and Long’s preferred method is responsible for their

\(^{10}\) A STATA program, “unidiff,” is available for estimating this class of models.
surprising conclusion. Indeed, they report a sensitivity analysis using a more conventional loglinear model of Xie (1992) in Appendix 2, which shows similar, but less pronounced, findings. This is not surprising, because Altham’s (1970) index is also based on the same idea, as in loglinear models, that comparing two mobility tables should focus on differences or similarity in odds-ratios. It is also important to note that Ferrie and Long were able to detect a trend of declining mobility only if they did not block out diagonal cells. Thus, changes in diagonal cells representing direct inheritance are of high significance. In their own words, they “cannot…reject the hypothesis that the associations are identical [for 19th and 20th century US samples] when the diagonal elements in P and Q are excluded, suggesting that change in the likelihood of direct inheritance of the father’s occupational status by the son was the greatest difference between these eras, rather than more subtle change in the structure of association between one generation’s occupation and that of the next” (Ferrie and Long forthcoming, p. 22).

While the literature on social mobility has long been focused almost exclusively on odds-ratios, the practice has not gone unchallenged. In particular, Logan (1996) and Hellevik (2007) have argued that the invariance property of odds-ratios to multiplicative changes in marginal distributions does not mean in general that they appropriately account for changes in supply and demand, i.e., overall changes in the marginal distribution of occupations. While we are reluctant to enter the debate on the appropriateness of odds-ratio methods in social mobility research in general, our examination of the Ferrie-Long data has led us to question the use of odds-ratios as measures of social mobility for farmers, especially when social mobility is compared across regimes at very different levels of industrialization, such as the pre-1900 U.S. and the post-1970 U.S.

THE UNIQUE CASE OF FARMERS

As we discussed before, Ferrie and Long follow the larger literature in defining social mobility in terms of how close odds-ratios in an observed mobility table are to 1. The case of perfect mobility is the independence model, in which all observed frequencies are determined multiplicatively by marginal distributions, shown in equation (2). Lack of mobility, or social closure, means a deviation from the independence model. To observe concretely how an observed table departs from the ideal case of perfect mobility, we may take the ratio, cell by cell, between an observed table and the corresponding table using the same marginal distributions but
satisfying independence (i.e., equation 2). In Table 3, we present such ratios for two key U.S. tables in the Ferrie-Long study: one based on the 1860-1880 censuses and one based on the 1973 survey data.

| Table 3: Ratios of Observed to Predicted Counts in Two U.S. Mobility Tables |
|-----------------------------------|---------------------------------|----------------|----------------|
| Father’s Occupation | White Collar | Farmer | Skilled/Semiskilled | Unskilled |
| Panel 1. 1860-1880 Census | | | | |
| White Collar | 2.41 | 0.72 | 1.32 | 0.86 |
| Farmer | 0.39 | 1.28 | 0.51 | 0.58 |
| Skilled/Semiskilled | 1.05 | 0.75 | 1.68 | 1.40 |
| Unskilled | 0.91 | 0.90 | 1.00 | 1.83 |

Panel 2. 1973 OCG

White Collar	1.48	0.66	0.90	0.73
Farmer	0.14	5.32	0.22	0.42
Skilled/Semiskilled	0.56	1.07	1.17	1.27
Unskilled	0.63	1.26	1.00	1.42

Note: Data are from Tables 1 and 5 of Ferrie and Long (forthcoming). Predicted counts are based on the independence model.

We are immediately drawn to three large outliers (highlighted with shades) in Panel 2, all pertaining to the social origins of farmers. As ratios of frequencies, all entries in Table 3 are positive, with 1 as the reference. A number much larger than 1 or much smaller than 1 is thus an outlier. For Panel 2 (1973 data), the number of farmers with fathers being farmers is far greater than expected under the independence model (the ratio being 5.3); the numbers of farmers with fathers being white-collar workers and fathers being skilled and semi-skilled workers are much smaller than expected (the ratios being 0.14 and 0.22, respectively). While there are clearly discrepancies between observed and predicted frequencies for Panel 1 (1860-1880 data), we do not see any discrepancy of a similar magnitude.

We now conduct a few auxiliary analyses to determine if Ferrie and Long’s main finding of a declining trend in mobility is primarily due to unusually large discrepancies for farmers between observed data and predicted data under independence in the modern era. First, recall Ferrie and Long’s own result that the trend is no longer significant when the diagonal cells are
removed from the analysis. In their comparison of the 1860-1880 and 1973 tables, the log-likelihood chi-squared statistic (G^2) drops from 46.7 with 9 degrees of freedom to 3.2 with 5 degrees of freedom. However, most of this change is driven by a single cell -- farmers with farmer fathers. If we block this cell from the analysis, the G^2 statistic declines to 11.8 with 8 degrees of freedom. Second, when we examine particular odds-ratios that Ferrie and Long identified as components that contribute the most to the overall d statistic, we immediately notice the prominence of this diagonal cell of farmers with farmer fathers. As reported by Ferrie and Long, this cell is involved in all the top seven component odds-ratios that contribute to the d statistic comparing the 1880 U.S. and the 1973 U.S. (their Table 6).\footnote{The same is true for their comparison between the 1880 U.S. and 1881 Britain (their Table 4). Odds-ratios involving the diagonal cell of farmers with farmer fathers are often unusually large. For example, the odds-ratio that involves the first two rows and first two columns of the 1973 U.S. table is 84 (top row of their Table 6).} Finally, we carry out an exercise in which we force the distribution of farmers’ social origin to be the same as the marginal distribution of all fathers, thus satisfying the independence condition. This alternation of data involving just one row of data wipes out completely the discrepancy between the 1880 U.S. and the 1973 U.S. using Ferrie and Long’s own method:

\[
\begin{align*}
 d(\text{altered 1973 table, } I) &= 8.3, \\
 d(\text{altered 1880 table, } I) &= 9.4, \\
\end{align*}
\]

From these analyses, we conclude that indeed farming was the main source of Ferrie and Long’s finding of high mobility in the 1880 U.S. as compared to the 1973 U.S. These results are very similar to Ferrie and Long’s own finding that, after removing cells of inflows to farming from the analysis, $d(P, I)=8.00$ and $d(Q, I)=8.15$, where P is the U.S. 1860-80 mobility table and Q is the U.S. 1953-73 table, with $d(P, Q) = 3.35$ (Ferrie and Long forthcoming, pp. 26-27). However, Ferrie and Long still explicitly dismiss farming as the only source for the higher level of observed mobility in the 1880 U.S. They state that “the importance of farming by no means exhausts the sources of higher mobility in the U.S.” (Ferrie and Long forthcoming, pp.19-20).

Let us now recall Ferrie and Long’s main conclusions in their study: (1) social mobility was higher in the 1880 U.S. than in 1881 Britain; and (2) social mobility was higher in the 1880 U.S. than in the 1973 U.S. These two patterns reported by Ferrie and Long mirror what we know about the level of industrialization of the two countries at the two time points: the agricultural
sector of the U.S. labor force was still large (around 50%) in 1880 but became very small (under 3%) in 1973, whereas the British labor force was overwhelmingly non-agricultural by 1881. Ferrie and Long also entertained the rapid reduction in the farming sector in the U.S. as an explanation for their observed decline in social mobility in the U.S. but rejected the hypothesis. Their discussion mostly focuses on selectivity of farmers. We also consider this hypothesis, and our consideration of the hypothesis leads us to challenge a basic premise that underlies the method used by Ferrie and Long and indeed almost all other researchers studying comparative social mobility.

To clarify our argument, let us examine Table 4, where we present descriptive statistics about farmers in six U.S. datasets (ranked in a chronological order). We observe a steady and rapid reduction of the share of farmers in the labor force, from 51% in the 1850-1880 census dataset to just over 1% in the 1979 NLSY data. This societal change in the reduction of the farming labor force has been very large in scale. It also means that, structurally, many sons of fathers who were farmers had to leave the farm (Blau and Duncan 1967). This structural force is further exacerbated by the fact that farmers tend to have more children than non-farmers (Duncan 1966).

Farming is a unique occupation in contemporary society in a number of aspects. First, in any developed nation, it has gone through a very rapid reduction as a share of the economy during industrialization. Second, in studies of occupational prestige, farming is generally lowly ranked (Treiman 1977). Third, farming is one of these few occupations where direct inheritance from father to son was normative in the past and still widely practiced today. For these reasons, we argue that it should be treated differently from other occupations. While it may be sensible to expect a cell in a mobility table to rise or fall as a function of marginal distributions, as shown in equation (2), under perfect mobility, it may be incorrect however to apply the proportionality principle to the case of farmers. The uniqueness of farmers was observed long ago by Duncan (1966, p.68), who remarked that “[farming] is probably an extreme example of an occupation recruited from sons of men pursuing the same occupation.”

12 Note that the NLSY study began in 1979 when the subjects were young (14-22 years old). Ferrie and Long’s mobility table from the NLSY pertains to jobs held by the subjects in years later than 1979.

13 Farming consists of farm owners and farm workers, with the former much more highly ranked in prestige than the latter.
As America became more and more industrialized, we know that large proportions of farmers’ sons migrated out of farming (Blau and Duncan 1967). With time, the proportion of sons with farmer fathers necessarily became smaller and smaller. This is apparent in Ferrie and Long’s data, shown in the rows labeled “marginal” for each data set in Table 4: the percentage of farmer farmers among all workers declines rapidly from 68% in the 1850-1880 data to 15% in the 1973 data, and further to under 4% in the 1979 NLSY data. If the independence model were true, we would expect the inflow distribution of farmers to mirror that of the “marginal.” However, the independence assumption is strongly violated: the steady and rapid decline in the proportion of farmer fathers in general did not translate into a parallel decline in the proportion of farmer fathers among farmers, shown in the rows labeled “farmers” in Table 4. In fact, the distribution of father’s occupation among farmers remains stable across all the American datasets.
in the Ferrie and Long study.\footnote{Indeed, it is roughly the same across many other datasets we have examined for this paper. However, to ensure comparability across datasets and to save space, we only present the results for the U.S. datasets used in the Ferrie-Long study.} It does not matter how fathers’ occupation is distributed overall; the majority of fathers among farmers (around 80\% for almost all datasets) have always remained farmers.\footnote{This is a unique feature pertaining only to farmers. For example, we repeated the same analysis for unskilled workers and did not find the dominance of fathers in the same occupation to be true throughout the datasets.}

In their classic study, Blau and Duncan (1967, p.60) recognized the uniqueness of farmers, as they drew “a boundary between the industrial and the agricultural sectors of the labor force, which is manifest in the finding that both intergenerational and intragenerational movements from any nonfarm occupation to either of the two farm groups fall short of what would be expected under conditions of statistical independence.” Building on Blau and Duncan’s observation, economists Laband and Lentz (1983) provided an explanation using human capital theory: a son accumulates valuable human capital, both about farming in general and about particular soil farmed by his father while growing up on the farm. To prove their theoretical explanation, Laband and Lentz showed empirical evidence that farmers who had farmer fathers “earned a premium for the added experience they have over [their counterparts who did not have farmer fathers]” (p.314).

Based on the insights of Duncan (1966), Blau and Duncan (1967), and Laband and Lentz (1983), as well as the empirical pattern shown in Table 4, we thus propose that farmers are unique in that they overwhelmingly come from farmer families, regardless of secular changes in the overall occupational structure. Of course this uniqueness can be sustained only when the agricultural sector is shrinking or at least not growing. If our proposition is taken to be true, then the declining trend of mobility from the 19th century to contemporary America that is reported by Ferrie and Long is simply an artifact of their statistical method of relying on the independence model as the reference and the proportional adjustment for differences in marginal distributions. That is, their measure of mobility merely captures the discrepancy of the conditional distribution of farmers’ fathers from the marginal distribution of all fathers. Over time, the two distributions grow more and more dissimilar. We believe that this trend of growing dissimilarity over time is due to two separate social forces: on the one hand, industrialization diminishes the demand for farmers, but on the other hand, farming is such a unique occupation that the dominant inflow of farmers has remained to be of farmer origin. Ferrie and Long misidentified this trend of growing dissimilarity as a declining trend in social mobility.
CONCLUSION

We congratulate Ferrie and Long on their significant contribution to an already large literature on comparative social mobility. Using data from linked historical censuses, the Ferrie-Long study has provided, for the first time, nationally representative data on social mobility in the 19th century U.S. and Britain. The valuable historical data allow them, as well as other scholars in the future, to examine long-term trends in social mobility and to compare mobility regimes across countries in a distant past. A key finding of the Ferrie-Long study is that, compared to either today’s U.S. or Britain at the same time, the pre-1900 U.S. exhibited an unusually high level of social mobility.

While we applaud the Ferrie-Long study for providing good historical data and for making a bold statement about the “good old days” for social mobility in America’s past, we caution the reader not to accept the study’s main conclusion yet. In this paper, we have discussed three sets of issues. First, the data quality of the Ferrie-Long study is far more limiting than the authors acknowledge. For example, they did not report the fact that mobility is impossible to construct for almost a third of their subjects because they did not co-reside with their fathers at the time of an earlier census. Furthermore, through an analysis of data that were overlooked by Long and Ferrie, we found suggestive evidence that the likelihood of matching is selective with respect to mobility in a way that is favorable to their conclusion.

Second, Ferrie and Long’s key finding hinges on an operationalization of the concept of “social mobility” in terms of odds-ratios and the inclusion of diagonal cells, manifested in results using Altham’s index for whole tables. It is true that the standard literature in sociology on comparative social mobility is also almost entirely concerned with odds-ratios as measures of relative social mobility through the use of the loglinear model. However, the loglinear approach, as commonly practiced, differs in one important respect: diagonal cells are often blocked out in loglinear models of mobility tables so that attention is focused only on independence for off-diagonal cells (called “quasi-independence”), whereas Ferrie and Long’s main analysis includes diagonal cells. Although the method of blocking diagonal cells in loglinear analysis was not designed specifically to handle the unique case of farmers, who seem to defy the independence hypothesis in terms of being proportional to marginal distributions, it is fortuitous that this practice effectively removes the confounding influence of the uniqueness of farmers in comparative studies of social mobility in past research.

Another difference is that a loglinear model smoothes observed data through modeling and thus minimizes the influences of sampling errors, whereas Altham’s index treats sampled data as if they were population data.
Third, the shortcoming of an exclusive reliance on odds-ratios becomes apparent when we look at farmers. Since 1880, the agricultural sector of the U.S. labor force has rapidly shrunk. Corresponding to this trend is a secular decline in the proportion of farmers among fathers of all workers. In the odds-ratio approach, perfect mobility means independence, which in turn dictates that the likelihood of drawing workers in any occupation, even farmers, from farmer origin should decline accordingly. However, we have argued and shown in this paper that farmers are unique in always drawing their members overwhelmingly from farmer origins, regardless of secular changes in the overall occupational structure. As a result of these two separate social forces, the distribution of father’s occupation among farmers became more and more dissimilar to that of the distribution of father’s occupation among all workers. Ferrie and Long’s finding of a significant decline in social mobility merely reflects this trend of growing disparity between farmers and other workers in terms of their father’s occupation.

If Ferrie and Long’s key finding is no more than a methodological artifact, why have so many other researchers in the loglinear tradition missed it? Additional to the lack of long-term trend data in the past, another important reason is that the loglinear model is both too powerful and at the same time too complicated. The power of the loglinear model lies in its ability to fit any observed data with flexible parameterization. In particular, researchers are often quick in fitting diagonal cells to block out immobility when their models do not fit observed data. As we showed earlier, and as Ferrie and Long explained, diagonal cells do carry useful information and do matter. We would not have learned as much as we did from Tables 3 and 4, if we had excluded diagonal cells early on. Much of the uniqueness of farmers has to do with a diagonal cell: farmers from farmer origins. To make the loglinear model powerful in explaining observed data well, researchers often fit many parameters but do not always exercise care in interpreting them. It was only through applying Ferrie and Long’s simple and descriptive approach that we arrived at the conjecture that farmers may be qualitatively distinct from other workers in keeping their social origin distribution constant over time. Proposed as an alternative explanation of Ferrie and Long’s key finding, our conjecture is still a hypothesis. We welcome other researchers to debate and evaluate our hypothesis in future studies.
REFERENCES

The **Population Studies Center** (PSC) at the University of Michigan is one of the oldest population centers in the United States. Established in 1961 with a grant from the Ford Foundation, the Center has a rich history as the main workplace for an interdisciplinary community of scholars in the field of population studies.

Currently PSC is one of five centers within the University of Michigan's Institute for Social Research. The Center receives core funding from both the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R24) and the National Institute on Aging (P30).

PSC Research Reports are **prepublication working papers** that report on current demographic research conducted by PSC-affiliated researchers. These papers are written for timely dissemination and are often later submitted for publication in scholarly journals.

The **PSC Research Report Series** was initiated in 1981.

Copyrights for all Reports are held by the authors. Readers may quote from this work as long as they properly acknowledge the authors and the Series and do not alter the original work.